Bicep Cheat Sheat

What is Bicep?

Bicep enables you to define your Azure resources in a simple templating language and then use the template
to automate the process of deploying these resources across multiple environments and applications.

Where can | use Bicep?

Bicep can only be used to deploy resources onto Microsoft Azure.
Other cloud providers don't support Bicep as a template language.

What benefits will it provide?

Bicep enables you to scale your solutions and to deliver with higher quality and consistency.

What do | need to install to use Bicep?

You need:

1. An Azure account to which you have contributor access. If you don't have an Azure account you can get
a free trial;

2. Either:

* The latest Azure CLI tools installed locally, or;
* Yhe latest version of Azure PowerShell installed locally.

In addition, we highly recommend that you install Visual Studio Code and use the Bicep extension for Visual
Studio Code. All code samples in this cheat sheet were prepared using Visual Studio Code.

Bicep v0.4.451 | Preview

Microsoft | < 146,286 % % ko (7)

Bicep language support for Visual Studio Code
Disable v Uninstall v £8%

This extension is enabled globally.

This extension is recommended based on the files you recently opened.

Details Feature Contributions Dependencies Runtime Status

Key features of the Bicep VS Code extension

The is capable of many of the features you would expect out of other language tooling. Here is a
comprehensive list of the features that are currently implemented.

Validation

The bicep compiler validates that your code is authored correctly. We always validate the syntax of each file and whenever
possible also validate the return types of all expressions (functions, resource bodies, parameters, outputs, etc.). Depending
on the type of validation, you will see either a warning in yellow which will successfully compile with bicep build oryou
will see an error in red which will fail to compile either. Bicep is more restrictive than ARM Templates, so certain behaviors
in ARM Templates that you have used may not be supported and result in an error in bicep. For example, we no longer
allow math functions like add() because we support the + operator.

See for more information about Bicep data types and the type validation rules.

The Visual Studio code Bicep extension also provides a tool to visualise dependencies in your Bicep template:

‘ keyVaul.. ticsKey ‘ keyVaul...ndPoint ‘ functionApp

‘ eyVault

‘ textAnalytics ‘ applnsights

Where can | get more resources?

All of the documentation for Bicep is available online:
https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/

The Bicep Github site provides hundreds of examples of templates that you can re-use:
https://github.com/Azure/bicep
There is an excellent Microsoft Learn module that includes practical exercises:

https://docs.microsoft.com/en-us/learn/paths/bicep-deploy/

Overview

The following illustration provides an overview how Bicep templates are structured and deployed via the
Azure CLI or Azure PowerShell.

Each of the elements in the diagram are expanded further in the colour coded sections in this cheat sheet.

Bicep template:
<filename>.bicep

Parameter
file:
<filename>

json Azure CLI
or
Azure

PowerShell

Variables

Bicep
module:
<filename>
.bicep OR
<URI to
Bicep
registry>

Resources

Outputs

Use parameters to create flexible and reusable Bicep templates. Users will be prompted for a value where
no default is provided. Use the param keyword to create a parameter, the most basic example is:

param keyVaultSku string = 'Standard’

The following types are supported:

Type Example
string param environmentName string = 'dev'’

int param appServicePlanInstanceCount int = 3
bool param enablePublicAccess bool = true

param locations array = [
'eastus’

arra \ ,
y euwest

param subNet object
name: ‘subnetName'’

object addressPrefix: '10.0.0.0/24°

You can set the default value of parameter dynamically based on the context of deployment:

param location string = resourceGroup().location

Decorators (denoted by @) can be used to augment parameters:

Decorator Purpose Example
Prevent Azure from capturing
@secure values in the deployment CEEERE)
logs Py param sglServerAdministratorPassword string
@allowed([
‘dev'
@allowed Limit the parameter to one of ’test’
a pre-defined set of values. ’prod’
D)
param environmentName string = 'dev'
mintengnn Enree minmu enotn -
@maxLength 9 g

characters. param appName string

‘Runtime language for Function.’)
param functionRuntime string = 'python’

Provide a helpful description
for the parameter.

@description @descript

- Use parameters only for settings that change between deployments. Be mindful of the default values
you use.

« Use camel case for parameter names. Make your templates easy to read and understand by using clear,
descriptive names for parameters. Provide @description to provide any important information about
what the template needs the parameter values to be.

- Put parameters at the top of the file so your Bicep code is easy to read.

+ Use the @allowed decorator sparingly. If you use this decorator too broadly, you might block valid
deployments if you don't keep the list up to date.

Parameter files make it easy to specify parameter values together as a set. Use this approach when you
have many parameters or when you need to automate your deployments.

Parameter files use JavaScript Object Notation (JSON) as follows:

"$schema": "https://schema.management.azure.com/schemas/2019-04-01/
deploymentParameters.json#",
"contentVersion": "1.0.0.0",

"parameters": {

"appServicePlanInstanceCount": {
"value": 3

Element Element value in example above

Schema $schema
declaration.

Purpose

Helps Azure Resource Manager to
understand that this file is a parameter file.

Version. "contentVersion" 53 _prqperty it e ;an Use to keep tra;k
of significant changes in your parameter file.
Parameters " " The parameters section lists each parameter
. parameters
section. and the value you want to use.
e e I e T Thg parameter_ value must be specified as an
Parameter i N object. The object has a property called
. value": 3)
declaration. value that defines the actual parameter value

}

to use.

+ Generally, you'll create a parameter file for each environment.

- It's a good practice to include the environment name in the name of the parameter file. For example,
you might have a parameter file named main.parameters.dev.json for your development environment
and one named main.parameters.production.json for your production environment.

Use variables to capture complicated expressions. Then simplify your development by using variable as
needed throughout your Bicep file.

Declare a variable using the var keyword. Unlike parameters, there is no need to define the type as this is
inferred by the value assigned. Variables support the same types as parameters:

var functionRuntime = 'python'

Use variables and string operations standardise creation of unique composite names for resources:

@minLength(1)

@maxLength(4)

@description('A short prefix to be used in resource names.')
param appNamePrefix string

param appNameSuffix string = uniqueString(resourceGroup().id)
@allowed([

"dev'

"tst'

‘prd"
1)

param environmentName string = 'dev’

var appName = '${appNamePrefix}-${environmentName}-${appNameSuffix}’
var appServicePlanName = ‘spln-${appName}’
var storageAccountName = 'stor${replace(appName, '-', "')}'

Applying a conditions to select appropriate for the properties of a resource.

var storageSkuName = (environmentName == 'prod') ? 'Standard_GRS' 'Standard_LRS*

- Use camel case for variable names. Make your templates easy to read and understand by using clear,
descriptive names for variables.

+ Use string interpolation to create resource name variables. Add a prefix to the unique string generated
by the uniqueString() function to avoid creates name that starts with a number as this is not allowed by
some resource types.

We help teams achieve things

https://azure.microsoft.com/en-gb/free/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep
https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/
https://github.com/Azure/bicep
https://docs.microsoft.com/en-us/learn/paths/bicep-deploy/

Resources

Resources are deployed denoted using the resource keyword as follows:

resource storageAccount ‘'Microsoft.Storage/storageAccounts@2021-02-01' = {
name: 'appdatastorage’

Every Bicep file can be consumed as a module. A module only exposes parameters and outputs as a
contract to other Bicep files. Use the module keyword to consume a module.

Modules can be consumed from a local file system. In the example below, a separate Bicep module is
called which takes care of the complexities of setting up the storage account resource:

param namePrefix string
param location string = resourceGroup().location

used within Bicep to refer to the resource module stgModule './storage.bicep' = {

i)a/rr:nnk;ollc storageAccount during deployment, they don't show up in name: ‘storageDeploy’
' Azure. params: {
storagePrefix: namePrefix
Is the type of resource that you want to location: location
deploy. }
Resource }
provider / Microsoft,Storage/storageaccounts The following site lists all resource types that output storageEndpoint object = stgModule.outputs.storageEndpoint
resource are available to deploy via Bicep and provides
type. full definition of the template for each type: Modules can also be consumed from a Bicep registry is hosted on Azure Container Registry (ACR). For the

example above, the following syntax would be adopted:
Azure Resource Manager template reference

API version. 2021-02-01 The version resource provider API that will be module stgModule 'br:<registry-name>.azurecr.io/bicep/modules/storage:vl' = {
used to create the resource.

The name of the resource as it will appear in)
Resource : . : .
name: 'appdatastorage Azure Portal. This must comply with the !
name. . . e Element Element value in example above Purpose
naming convention for that specific resource.
Symbolic dul Identifier for the modul
Access any resource in Bicep by using the symbolic name. Use resource properties or functions to A stgModule entifier for the module.
generate outputs: ; ; .
Module file './storage.bicep' OR Module files must be referenced by using
OR Bicep 'br:<registry-name> relative paths. The Windows backslash (\)

Access a specific property in a resource. applicationInsights.properties.InstrumentationKey

registry .azurecr.io/bicep/modules/ character is unsupported. Paths can contain
URL. storage:vl' spaces.

Name The name property is used when Bicep
Use the getSecret() function to retrieve

property name: ‘'storageDeploy’ generates the template as the name of the
the value of specific secret in key vault. FEE S HHESEE T) nested deployment resource.

. o]] params: { The params property contains any parameters
If the resource already exists and isn't being deployed in the Bicep file, you can still get a symbolic Parameters storagePrefix: namePrefix to pass to the module file. These parameters
reference to the resource using the existing keyword: object. location: location should match the parameters defined in the

} Bicep file.

resource keyVault 'Microsoft.KeyVault/vaults@2021-04-01-preview' existing = { Module o s ot (o oo Aot (o 2 el
name: ‘mykeyvault’ . stgModule.outputs.storageEndpoint 15 symtax 1o 9 utpu
} outputs. value from a module.

« Use modules to break down a complex solution into more manageable parts and to abstract away
complex details of the resource declarations, which can increase readability.

To make your Bicep file easier to read and understand, use variables to contain complex expressions.
This will avoid cluttering your resource definitions with logic.

« Design your modules with re-use in mind, give each module a clear purpose and adopt parameters

- Use resource properties as outputs, rather than making assumptions about how resources will behave. - .) .
Prop P 2 P (inputs) and outputs that make sense. Make it as self-contained as possible.

It's safer to have the resource tell you its own properties.
- In general, it's better for modules to combine multiple related resources. For example, to define a

Use a recent API version for each resource. New features in Azure services are sometimes available only . :
database server and all its child databases.

in newer API versions.

+ A module should not output secrets.

Resource dependencies

In most cases dependencies between resources are implicit - Bicep will manage them without you
needing to specify them. In the example below, the keyVaultEndPointName resource will not be created
until after:

- the parent keyVault resource has been created, AND;

Use outputs to pass data generated during deployment of the Bicep template back to whoever or
whatever is executing it.

the textAnalytics resource which is references has been created. Use the output keyword to declare an output:

resource keyVaultEndPointName 'Microsoft.KeyVault/vaults/secrets@2019-09-01' = {
parent: keyVault
name: 'endPointName’
properties: {
value: textAnalytics.properties.endpoint
b
¥

You can create explicit dependencies by using the dependsOn element:

resource otherZone 'Microsoft.Network/dnszones@2018-05-01' = {

name: ‘'myZone'
location: 'global'’ A value must be specified for each output. Unlike parameters,

output appName string = appServiceAppName

When a template is deployed successfully, the output value will
appName be tagged with the name that you specify here so that it can be
accessed symbolically.

Name of
output.

Type. Bicep outputs support the same types as parameters.

dependsOn: [appServdceAppName outputs_always need to have values. Output yalues can be .
dnsZone expressions, references to parameters or variables, or properties
1 of resources that are deployed within the file..

}

Qutput the properties of resources by using the resources symbolic reference in Bicep:

Setting unnecessary explicit dependencies using dependsOn slows deployment time because Resource
Manager can't deploy those resources in parallel. output textAnalyticsEndPoint string = textAnalytics.properties.endpoint

- Even though explicit dependencies are sometimes required, the need for them is rare. In most cases
you have a symbolic reference available to imply the dependency between resources. If you find
yourself using dependsOn you should consider if there is a way to get rid of it.

Don't create outputs for secret values like connection strings or keys. Anyone with access to your
resource group can read outputs from templates.

If you're deploying to a resource group that doesn't exist, create the resource group:

az group create --name rg-myapp-dev-westeu --location "West Europe"

Use the New-AzResourceGroupDeployment PowerShell command to deploy the Bicep:

az deployment group create \
--name AppDeployDevelopment \
--resource-group rg-myapp-dev-westeu \
--template-file ./main.bicep \
--parameters appName=myapp ./mapp.dev.parameters.json
--confirm-with-what-if

Element

Name of
deployment.

Resource
group.

Bicep template.

Bicep
parameter.

Preview
changes and
confirm.

Element value in e
above

--resource-grou

--template-file

--parameters

--confirm-with-

xample

p

what-if

Purpose

Sets the name of the deployment as it will appear in
the activity log in the Azure portal.

The name of the resource group into which the
resources should be deployed.

The path to the bicep template file that should be
deployed.

The value of any parameters (e.g. a parameter
named "appName”) for the Bicep template can be set
in line and/or the path to a file containing the
parameters can be provided.

This flag allows you to preview the changes before
committing them into your environment.

If you're deploying to a resource group that doesn't exist, create the resource group:

New-AzResourceGroup -Name rg-app-dev-westeu -Location "West Europe"

Use the New-AzResourceGroupDeployment PowerShell command to deploy the Bicep:

New-AzResourceGroupDeployment °
-Name AppDeployDevelopment °
-ResourceGroupName rg-myapp-dev-westeu °
-TemplateFile ./main.bicep
-appName "myapp" °
-TemplateParameterFile ./mapp.dev.parameters.json °

-Confirm

Element

Name of
deployment.

Resource
group.

Bicep template.

Bicep
parameter.

Bicep
parameter file.

Preview
changes and
confirm.

Element value in example

above

-ResourceGroupName

-TemplateFile

-TemplateParameterFile

-Confirm

We help

Purpose

Sets the name of the deployment as it will appear in
the activity log in the Azure portal.

The name of the resource group into which the
resources should be deployed.

The path to the bicep template file that should be
deployed.

The value of any parameters (e.g. a parameter
named "appName”) for the Bicep template can be set
in line in the PowerShell command.

The path to the parameter file.

This flag allows you to preview the changes before
committing them into your environment.

teams achieve things

https://docs.microsoft.com/en-gb/azure/templates/
https://docs.microsoft.com/en-gb/azure/azure-resource-manager/bicep/private-module-registry

